Measurements of *PVTx* Properties for the Binary Refrigerant HCFC 142b + HCFC 22 System

Katsuhiko Kumagai, Naoyuki Yada,* Haruki Sato, and Kolchi Watanabe

Department of Mechanical Engineering, Faculty of Science and Technology, Kelo University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223, Japan

This paper reports PVTx properties for the HCFC 142b + HCFC 22 system in a wide range of temperatures from 297 to 443 K, of pressures from 0.5 to 10.0 MPa, and of densities from 72 to 1079 kg/m³. For 4 compositions, i.e., 20, 40, 60, and 80 wt % HCFC 142b, 422 PVTx measurements have been made along 31 isochores. The uncertainties of the temperature, pressure, and density measurements are less than ± 10 mK, ± 3.0 kPa, and $\pm 0.1\%$, respectively. From the *PVTx* measurements for 20, 40, 60, and 80 wt % HCFC 142b, we have determined dew points and bubble points, enabling us to construct the dew- and bubble-point curves for each composition. We have also compared the vapor-liquid equilibrium data along three isotherms, where the experimental data are reported by others, with the vapor-liquid equilibrium curve calculated from the Raoult's law.

Introduction

The advantage of using binary refrigerant mixtures for refrigeration and heat pump systems as well as Rankine cycle applications with small temperature difference has been pointed out and discussed in many references (1). The *PVTx* properties of binary refrigerant mixtures should be known accurately not only for the system design but also for reliable assessment of the cycle performance.

Although the binary refrigerant mixture of the hydrochlorofluorocarbon (HCFC) 142b (CH₃CCIF₂, 1-chloro-1,1-difluoroethane) and HCFC 22 (CHCIF₂, chlorodifluoromethane) system is one of the technically important mixtures, experimental measurements of the thermodynamic properties of this system have not been available up to now. The HCFC 142b + HCFC 22 system has been proposed as a promising candidate to replace CFC 12 (2), because of the low ozone depletion potentials of HCFC 142b and HCFC 22.

In our previous publications, we have reported the *PVTx* measurements for the CFC 12 + HCFC 22 system (3), the HCFC 22 + CFC 114 system (4), the Halon 1301 + CFC 114 system (5), the HFC 152a + CFC 114 system (6), and the CFC 115 + CFC 114 system (7, 8), respectively. In this paper we report the thermodynamic properties of the HCFC 142b + HCFC 22 system in a wide range of temperatures from 297 to 443 K, of pressures from 0.5 to 10.0 MPa, and of densities from 72 to 1079 kg/m³. We have measured 442 *PVTx* properties for 4 compositions, i.e., 20, 40, 60, and 80 wt % HCFC 142b along 31 isochores. On the basis of the experimental data, we have determined dew points and bubble points for representing the dew- and bubble-point curves of each mixture with different composition.

Experimental Section

The method, apparatus, and procedure of the *PVTx* measurements used here have been described in detail in our pre-

* To whom correspondence should be addressed.

vious publications (9, 10). In principle, the *PVTx* measurements of this work were made by a constant-volume method coupled with isothermal expansion procedures. Figure 1 shows a schematic diagram of the apparatus used.

Prescribed quantities of 99.98, 99.82, and/or 99.9 wt % pure HCFC 142b, and that of 99.97 wt % pure HCFC 22, were prepared in two independent vessels, which had been evacuated in advance. The amount of the pure component in each vessel was adjusted by weighing to the necessary mass by means of a precision chemical balance with a sensitivity of 2 mg. The temperature was measured by a 25- Ω platinum resistance thermometer calibrated on the IPTS-68 within ± 5 mK. The temperature in the thermostated bath is controlled within ±5 mK. Thus the uncertainty of the temperature measurements was less than ± 10 mK. Since the sample temperature was not measured directly in the present measurements, careful attention has been given to verify the existence of thermodynamic equilibrium between the sample and the thermostated bath fluid during the experiments. The sample pressure was transmitted to an external pressure measuring system through a diaphragm-type differential pressure detector by balancing the sample pressure with the pressure of the nitrogen gas applied as the pressure transmitting medium. The sensitivity of the pressure measurements was about 0.1 kPa. The nitrogen pressure was measured with two different pressure gauges: an air piston gauge for pressures below 4.2 MPa and an oil-operated dead weight pressure gauge for pressures above 4.2 MPa. The uncertainty of the pressure measurements was less than ± 1.4 kPa for pressures below 4.2 MPa, whereas less than ± 3.0 kPa for those above 4.2 MPa. The uncertainty of the density measurements after the expansion procedure accumulates by repeating the expansions. Since the expansion procedures did not exceed three times in the present study, the uncertainty of the density measurements was estimated to be less than $\pm 0.1\%$. The uncertainty of the mass fraction measurements was also estimated to be less than $\pm 0.1\%$.

Results

The experiments have been carried out for four compositions, namely, 20, 40, 60, and 80 wt % HCFC 142b. Table I summarizes all of the experimental data, including the vaporliquid coexistence data in the two-phase region (those data are identified by footnote a in Table I). The distribution of the measured points is shown in Figure 2. Nine Series of the PVTx measurements for the mixture of 20 wt % (17.7 mol %) HCFC 142b + 80 wt % (82.3 mol %) HCFC 22 cover the density range from 80 to 985 kg/m³. Table I gives 135 PVTx data for this composition, including 54 data in the two-phase region. For the mixture of 40 wt % (36.5 mol %) HCFC 142b + 60 wt % (63.5 mol %) HCFC 22, the observations correspond to the densities from 85 to 1079 kg/m³. Table I lists 81 PVTx data for this composition along 6 isochores, including 30 measurements in the two-phase region. For the mixture of 60 wt % (56.3 mol %) HCFC 142b + 40 wt % (43.7 mol %) HCFC 22, the measurements cover the densities from 95 to 1047 kg/m³. The 96 PVTx data along 7 isochores, including 44 data in the vapor-liquid coexisting region, are tabulated in Table I. Nine

cell; C: Differential cell; B: Expansion pressure A: Sample D: Heater; Stirrer; Platinum resistance E: detector: thermometer; G: Thermostated bath; H: Vacuum pump; I: Bourdon cylinder; tube differential pressure gage; J: Nitrogen detecting differential : Oil-gas separator; pressure; L: N: Oil-operated Nitrodifferential for Electronic device damper; M: dead gas gen weight pressure gage; O: Air-piston 1-11: Valves gage; P: Temperature bridge;

Figure 1. Schematic diagram of the apparatus.

series of the *PVTx* measurements for the mixture of 80 wt % (77.5 mol %) HCFC 142b + 20 wt % (22.5 mol %) HCFC 22 cover the density range from 72 to 1038 kg/m³. Table I gives 130 *PVTx* data for this composition, including 63 data in the two-phase region.

Analyzing these PVTx measurements graphically for four compositions, we determined the dew and bubble points by finding the breaking point of each isochore on the P-T plane. We determined the bubble point as the breaking point where the slope of the isochore increases, while the dew point was determined as the breaking point where the slope of the isochore decreases. Table II summarizes the dew points and bubble points for each composition of the HCFC 142b + HCFC 22 system with their uncertainties. When the isochore is nearer to the critical density, it is not so easy to identify the breaking point accurately because the measured data in the critical region is accompanied by some larger uncertainties. In spite of the importance of determining the critical points of the mixtures precisely, it seems to us rather premature to provide the critical point data, only from the present measurements. We are expecting, however, that a set of the critical parameter values for the present binary mixtures will be provided through the direct observation of the meniscus disappearance currently being

Figure 3. Dew and bubble points of the HCFC 142b + HCFC 22 system.

Figure 4. Comparison of the vapor-liquid coexistence data for the HCFC 142b + HCFC 22 system.

undertaken by our group at the Thermodynamics Laboratory, Keio University, Yokohama, Japan (11).

Discussion

The dew points and bubble points listed in Table II are shown on the P-T plane in Figure 3, together with the vapor pressure curves and critical points of pure components HCFC 142b and HCFC 22. In addition, those of CFC 12 are also drawn for comparison with dew- and bubble-point curves of the 60 wt % HCFC 142b mixture. Connecting the dew and bubble points smoothly, we can obtain dew- and bubble-point curves from which dew points and bubble points at arbitrary temperatures or pressures can be deduced.

We find that the dew- and bubble-point curves of the HCFC 142b + HCFC 22 system are distributed almost evenly with their difference in weight fractions. From the envelope of the dew- and bubble-point curves in Figure 3, it is seen that this mixture is a nonazeotropic one that has different dew-point and bubble-point curves. Among the four compositions, the composition that has the largest envelope of dew- and bubble-point curve is 60 wt % HCFC 142b. The spread of the phaseboundary envelope for 20 wt % HCFC 142b is as large as that of 80 wt % HCFC 142b. Comparing the vapor pressure curve of CFC 12 with dew- and bubble-point curves of this mixture in Figure 3, we found that this mixture was reconfirmed as a substitute for CFC 12, as proposed in ref 2. The dew-point curve of 40 wt % HCFC 142b and the bubble-point curve of

Table I	Experimental Data ^a	
I ADIC I.	DADELTHERPET TAPE	

$\rho, kg/m^3$	<i>Т</i> , К	P, MPa	ρ , kg/m ³	<i>T</i> , K	P, MPa	ρ , kg/m ³	<u>T,</u> K	<i>P</i> , MP a
			20 wt % (17.7 mol %)) HCFC 142b	+ 80 wt % HCF	FC 22		
984.9*	303.183	1.0259	469.9	433.244	9.5323	235.8	413,157	5.6129
984.0*	323.126	1.6754	471.4*	373.120	4.4713	235.7	423.062	5.9510
983.3*	338.110	2,3232	471.3*	375.013	4.6265	235.6	433,185	6.2896
982.9	345.114	3.2536	471.3*	377.152	4.8011	235.5	443.184	6.6188
982.6	349 130	4 6671	471.2	379.116	4 9648	236.4*	368 127	3,9599
982.4	353 112	6 0979	470.9	394 322	6 2489	236.3	370 109	4 0901
082.1	357 092	7 5302	375 4*	323 157	1 6573	236.3	372 149	4 1620
091 0	361.094	8 9779	375.0+	343 179	2 5430	296.3	374 151	4 2380
093 1#	349 178	9 5107	374 7*	363 139	3 7994	200.0	371 195	4 1905
083.0	342.110	2.0101	374.5+	373 150	1 4396	140.9*	303 057	0.0076
900.0	244 119	2.0023	274.2	292 162	5 1500	140.2	202 126	1 6091
304.3 700 At	044.110	2.0334	979 0	402 150	0.1055	140.1*	323.130	1.0031
(04.4* 501.5*	303.132	1.0270	373.9	403.109	0.43/1	109.9*	040.100	2.4000
781.7*	323.216	1.0707	3/3.7	413.096	7.0598	139.8	363.180	3.1104
780.9*	343.134	2.5755	373.5	423.163	7.6774	139.7	383.174	3.4924
780.1	363.132	3.7987	373.3	433.160	8.2909	139.5	403.126	3.8584
779.7	373.139	4.8963	373.1	443.192	8.8981	139.5	413.181	4.0376
779.3	383.141	6.7932	374.4*	375.125	4.5852	139.4	423.175	4.2131
778.8	393.173	8.7591	374.4*	377.162	4.7416	139.3	433.078	4.3746
779.9*	369.097	4.2371	374.4*	378.126	4.8161	139.2	443.286	4.5463
779.9	370.158	4.3523	374.3	379.127	4.8904	139.9*	349.145	2.6954
779.8	371.119	4.5215	374.3	381.132	5.0248	139.9*	351.109	2.7884
779.5	378.137	5.8313	374.1	393.155	5.8067	139.9*	352.122	2.8385
779.1	388.138	7.7709	298.5*	303.218	1.0213	139.9*	353.110	2.8906
621.5*	304.325	1.0545	298.2*	323.135	1.6531	139.9	354.099	2.9271
621.0*	323.147	1.6734	297.9*	343.166	2.5284	139.9	355.121	2.9480
620.4*	343 116	2 5717	297 6*	363 137	3 6887	139.7	373 171	3 3034
619.8*	363 159	3 7870	297 3	383 143	4 9206	130.6	303 070	3 6767
619.1	383 147	5 5411	201.0	403 160	5 9760	22.5*	997 497	0.8433
618.8	202 1 21	6 7495	297.0	403.100	6 9 4 0 0	00.0*	201.401	0.0400
010.0	409 117	0.1420	290.9	410.100	0.3409	00.4*	040 141	1.0327
010.4	403.117	1.9101	290.7	423.205	0.7901	66.J	343.141	2.0822
618.1	413.188	9.2492	296.6	433.193	7.2483	88.3	353.199	2.1940
619.4*	373.148	4.5274	296.4	443.166	7.6899	88.2	373.155	2.4112
619.4*	375.116	4.6966	297.5*	373.661	4.4167	88.3*	334.141	1.9168
619.3*	376.142	4.7787	297.4*	375.111	4.5074	88.3*	335.162	1.9524
619.3*	377.088	4.8660	297.4	376.156	4.5685	88.3*	336.152	1.9876
619.3	378.095	4.9656	297.4	377.088	4.6165	88.3	337.1 66	2.0081
619.2	380.136	5.1895	297.4	379.126	4.7219	88.3	338.141	2.0234
473.0*	303.134	1.0183	297.2	393.062	5.3989	88.2	363.094	2.3035
472.5*	323.133	1.6586	237.1*	305.132	1.0687	88.1	383.121	2.5171
472.1*	343.131	2.5498	236.9*	323.132	1.6435	88.1	393.143	2.6210
471.6*	363.110	3.7438	236.7*	343.103	2.5008	88.0	403.084	2.7227
471.1	383.121	5.2986	236.4*	363.089	3.6253	88.0	413.066	2.8243
470.6	403.147	6.9930	236.2	383.156	4.5615	88.0	423,172	2.9262
470.4	413.165	7.8372	236.1	393.185	4.9210	87.9	433.099	3.0246
470.1	423.161	8.6849	235.9	403.113	5.2686	87.9	443.181	3.1245
		0.0010			0.2000	0110		0.1210
			40 wt % (36.5 mol %)) HCFC 142b	+ 60 wt % HCH	FC 22		
1079.4*	303.216	0.8670	396.0*	384.128	4.4934	134.9*	323.126	1.3191
1078.3	323.333	2.1350	396.0*	385.139	4.5636	134.8*	343.133	2.1016
1078.2	325.227	3.0945	396.0*	386.127	4.6321	134.6	363.139	2.7962
1078.5*	321.168	1.3649	396.0	387.130	4.7066	134.6	373.133	2.9771
1078.4	322.168	1.5520	395.8	392.865	5.0 964	134.5	383.138	3.1523
1078.0	328.105	4.5418	395.8	393.163	5.1177	134.7*	352.137	2.3501
1077.6	333.260	7.1461	395.4	413.111	6.4185	134.7*	359.132	2.6574
1077.3	336.325	8,7028	395.2	423.150	7.0616	134.7*	360.142	2.7022
857.6*	302.181	0.9595	395.0	433.171	7.6955	134.6*	361.165	2.7483
856.7*	323.132	1.4171	394.8	443,160	8.3253	134.6	362.160	2.7778
855.9*	343.082	2 1838	315.9*	303 157	0.8483	134.4	393 073	3 3919
855.1*	363.097	3 2249	315.6*	323 249	1 3880	134.4	403 919	3 4925
854.6	373 194	4 9633	315.3+	343 159	9 1939	194.9	400.212	30779
954 1	383 160	7 4506	215.0*	363.105	2.12.02	104.2	400.174	1 1964
959.9	299 155	9 7109	214 7*	303.034	3.0343 A 9796	104.1 95.1±	990.101	1.0509
000.0 QEE 0±	000.100 965 150	2 3400	014./*	302.032	4.4120	00.1- 01 1-	040.100	1.4000
000.U- 054 0±	300.100	0.0400	014.0	070.140 400 100	4.0/00	65.1T	040.140	1.0040
004.9*	300.100	0.0019	314.3	403.183	0.3/32	80.0	303.143	2.0300
004.9	301.007	3.5171	314.2	413.163	0.0494	84.9	373.156	2.1895
004.0	308.153	3.7650	314.0	423.192	6.3164	84.9	383.187	2.2890
804.8	309.179	4.0086	313.8	433.179	6.7739	85.1	344.143	1.8952
504.J	378.135	0.13/8	313.7	443.391	7.2423	85.2	345.141	1.9045
603.6	393.092	9.9739	314.6	387.184	4.5780	84.9	393.171	2.3834
397.6*	303.131	0.8501	314.6	388.178	4.6307	84.8	403.198	2.4786
397.2*	323.135	1.3932	314.5	389.191	4.6814	84.8	413.114	2.5721
396.8*	343.138	2.1427	314.5	390.168	4.7332	84.7	423.148	2.6650
396.4*	363.147	3.1357	314.5	391.182	4.7832	84.7	433.167	2.7557
396.0*	383.147	4.4151	135.0*	303.1 39	0.8229	84.6	443.205	2.8478

Tante I (Commu	····							
ρ , kg/m ³	<i>Т</i> , К	P, MPa	ρ , kg/m ³	<i>T</i> , K	P, MPa	ρ , kg/m ³	<i>T</i> , K	P, MPa
<u> </u>		60	wt % (56.3 mol %) HCFC 142b	+ 40 wt % HCI	FC 22		
1047.1*	306.108	0.7640	660.0	393.158	4.6121	150.6*	323.020	1.0886
1046.3*	323.113	1.1681	526.7*	303.140	0.7039	150.4*	343.203	1.6715
1045.3	339.116	5.5901	526.2*	323.122	1.1591	150.3*	363.162	2.4347
1044.7	348.137	9.8392	525.7*	343.149	1.7982	150.1	383.010	3.1551
1046.0*	329.139	1.3423	525.2*	363.149	2.6598	150.0	403.182	3.5603
1046.0	330.157	1.3950	524.8*	378.142	3.7896	149.9	413.157	3.7537
1045.9	331.143	1.8553	524.1	403.207	5.3336	149.8	423.183	3.9447
1045.8	333,124	2,7868	523.8	413.216	6.2506	149.8	433,176	4.1318
832.0*	303.239	0.7087	523.6	423.049	7.1751	149.7	443.173	4.3183
831.3*	323 142	1.1676	523.3	433 182	8 1 2 0 4	150.2*	374.147	2.9503
830.5*	343 130	1.8130	523.0	443.170	9.0700	150.2*	375.154	2.9918
829 7*	363 142	2 6867	524.5*	390 139	4 2469	150.2	376 185	3 0126
820.2*	373 147	3 2268	594 4+	391 146	4 3189	150.2	377 114	3 0327
879.8	999 154	5 1199	594 A*	302 145	4 9023	150.2	379 181	3.0756
828.0	303.104	7 4505	190.7*	302.140	0.6756	150.2	303 130	3 3635
897 B	409 151	9 5776	199.5*	323 008	1 1126	95.1*	310.096	0.7758
890.9#	979.007	2 9997	190 /*	343 083	1.7065	95.0*	393 145	1 0/01
620.0±	975 199	9 4091	190.9#	969 081	9 4957	04 Q#	949 109	1.0401
043.4*	976 144	0.4021	100.4	303.001	2.4007	54.5 04 9	272 001	1.0007
020.1	070.144	9.7570	109.0*	402.004	0.4014	54.0 04.7	373.021	2.2712
029.1	377.134	3.1310	100.0	403.004	4.0340	94.1 04.6	409 170	2.3074
662.9*	303.142	0.7072	100.5	423.104	4.0400	94.0	403.172	2.0094
002.3*	323.142	1,1031	100.0	433.104	4.7924	94.9*	301.120	1,0009
661.7*	343.150	1.8029	188.4	443.191	5.0407	94.9*	353.158	1.9293
661.1*	363.163	2.6720	189.0*	381.153	3.4030	94.9*	355.113	1.9969
660.4*	383.164	3.8128	189.0	384.122	3.5203	94.9*	356.124	2.0374
659.7	403.159	5.9524	189.0	385.149	3.5478	94.9	357.138	2.0733
659.3	413.160	7.3399	189.0	386.106	3.5776	94.8	358.033	2.0936
658.9	423.099	8.7596	189.0	387.222	3.6057	94.8	360.128	2.11 94
660.2*	389.135	4.2203	188.9	389.095	3.6573	94.6	413.167	2.7189
660.2*	390.174	4.2827	188.9	393.119	3.7691	94.5	423.178	2.8265
66 0.1	391.151	4.3574	188.7	413.142	4.2982	94.5	433.167	2.9334
660.1	392.162	4.4802	150.6*	313.600	0.8741	94.5	443.174	3.0378
		80	wt % (77.5 mol %) HCFC 142b	+ 20 wt % HCI	FC 22		
1038.1*	310.524	0.6488	518.1	403.565	4.4256	198.5*	383.151	2.9905
1037.5*	323.131	0.9171	517.8	413.181	5.2527	198.3	403.176	3.7773
1036.6	338.135	5.6271	517.2	433.176	7.0467	198.2	413.460	4.0600
1036.4	340.156	6.6161	517.0	443.206	7.9659	198.1	423.246	4.3083
1036.2	343.150	8.0753	517.5	423.141	6.1371	198.0	433.175	4.5712
1036.0	346.096	9.5173	518.2*	398.154	4.0441	197.9	443.217	4.8328
1037.3*	327.145	1.0113	518.2*	399.141	4.1100	198.4*	391.188	3.4233
1037.3*	328.040	1.0353	518.2*	400.081	4.1750	198.4	392. 077	3.4585
1037.2	329.157	1.2370	518.1*	401.168	4.2528	198.4	393.147	3.4905
1037.1	330.046	1.6733	518.1	402.149	4.3129	198.4	394.136	3.5199
1036.9	333.150	3.1929	397.5*	304.082	0.5519	114.9*	304.399	0.5389
825.0*	303.278	0.5449	397.2*	232.581	0.9137	114.8*	323.111	0.8669
824.2*	323.123	0.9172	396.8*	343.142	1.4281	114.7*	343.122	1.3542
823.4*	343.106	1.4473	396.4*	363.210	2.1411	114.6*	363.183	2.0144
822.6*	363.177	2.1791	396.0*	383.125	3.0834	114.5	383.145	2.5311
821.8	383.161	3.7606	395.6	403.193	4.3144	114.4	402.926	2.8104
820.8	403.038	8.4549	395.4	413.193	4.9656	114.3	414.140	2.94 90
822.2*	373.152	2.6305	395.0	433.364	6.2528	114.2	423.069	3.0816
822.0*	378.137	2.8829	394.8	443.395	6.8882	114.2	433.191	3.2143
822.0*	379.060	2.9313	395.7*	397.789	3.9643	114.1	443.10 9	3.3438
821.9	380.229	3.0791	395.7*	399.120	4.0513	114.5*	371.153	2.3373
821.9	381.117	3.2826	395.7*	400.176	4.1223	114.5	372.104	2.3666
821.5	388.126	4.8960	395.6*	401.154	4.1859	114.5	373.092	2.3818
821.3	393.105	6.0665	365.6*	402.160	4.2575	114.5	374.140	2.3976
655.4*	303.143	0.5438	395.2	423.202	5.6062	114.5	375.126	2.4121
654.8*	323.234	0.9179	315.8*	303.032	0.5349	114.4	393.114	2.6717
654.1*	343.175	1.4485	315.5*	323.486	0.9096	72.5*	303.140	0.5089
653.5*	363.121	2.1736	315.2*	343.259	1.4232	72.4*	323.846	0.8540
652.8*	383,152	3.1421	314.9*	363,153	2.1230	72.4*	343.150	1.3099
652.2	403,190	4.6738	314.6*	383,122	3.0579	72.3	363,160	1.6891
651.4	423.216	7.3554	314.3	403.191	4,2556	72.3	373.030	1.7703
651.1	433.151	8.7238	313.9	423.212	5.2266	72.2	383,101	1.8513
652.5*	393.149	3.7332	313.8	433.192	5,7023	72.3*	351,359	1.5512
652.4*	396.116	3,9081	313.6	443 197	6.1723	72.3*	352.112	1.5732
652.4*	397.117	3,9990	314.3*	399.084	4,0084	72.3	353 119	1.6010
659 3*	398 105	4.0774	314 9*	400 146	4 0796	79 9	354 009	1 6116
652.9	399 195	4 1716	314 9*	401 110	4 1363	79 2	355 091	1 6109
652.2	401 165	4.4118	314.3*	402 165	4 1986	79.9	393 155	1 9319
651.8	413 143	5.9844	314.9	405 111	4 3440	79.9	403 160	2 0071
520 4*	313 099	0.7116	314 1	413 997	4 7450	79 1	419 169	2.0947
520.1*	323 194	0.9118	190.1*	393 391	0 8049	791	429 144	2.1604
519 6*	343 167	1.4449	198 0+	343 199	1 9941	79 A	433 166	2.100-
519.1*	363 130	2.1670	198.7*	363 147	2 0890	790	443 190	2.20-0
518.6*	383.155	3,1289	100.7	000.141	2.0020	12.0	440.100	2.0010
010.0	000.100	011400						

Table I (Continued)

^aValues with an asterisk were measured at a state of vapor-liquid coexistence. The values of density and mass fraction in this state are only nominal.

Table II. Determined Dew and Bubble Points

	ρ , kg/m ³	<i>Т</i> , К	P, MPa
20	wt % (17.7 mol	%) HCFC 142	b
dew point	88.3 ± 0.1	336.4 ± 0.7	2.01 ± 0.05
dew point	139.9 ± 0.1	353.3 ± 0.9	2.91 ± 0.06
dew point	236.4 ± 0.1	369.8 ± 1.3	4.08 ± 0.07
dew point	297.4 ± 0.1	375.9 ± 1.4	4.57 ± 0.08
dew point	374.4 ± 0.1	378.5 ± 2.0	4.87 ± 0.10
dew point	471.3 ± 0.1	378.1 ± 2.5	4.89 ± 0.15
bubble point	619.3 ± 0.1	377.1 ± 1.2	4.86 ± 0.09
bubble point	779.9 ± 0.1	369.9 ± 0.7	4.31 ± 0.07
bubble point	983.1 ± 0.1	342.9 ± 0.6	2.55 ± 0.06
40	wt % (36.5 mol	%) HCFC 142	Ъ
dew point	85.1 ± 0.1	343.7 ± 0.5	1.89 ± 0.04
dew point	134.6 ± 0.1	361.7 ± 0.6	2.77 ± 0.05
dew point	314.6 ± 0.1	386.0 ± 1.6	4.53 ± 0.09
dew point	396.0 ± 0.1	385.9 ± 1.8	4.62 ± 0.10
bubble point	855.0 ± 0.1	366.8 ± 0.7	3.44 ± 0.06
bubble point	1078.5 ± 0.1	321.5 ± 0.4	1.38 ± 0.05
60	wt % (56.3 mol	%) HCFC 142	Ъ
dew point	94.9 ± 0.1	356.9 ± 0.6	2.08 ± 0.05
dew point	150.2 ± 0.1	375.3 ± 0.7	3.01 ± 0.05
dew point	189.0 ± 0.1	383.4 ± 0.9	3.52 ± 0.07
bubble point	524.4 ± 0.1	392.4 ± 2.1	4.43 ± 0.14
bubble point	660.1 ± 0.1	391.1 ± 1.0	4.35 ± 0.08
bubble point	829.1 ± 0.1	375.5 ± 0.7	3.42 ± 0.07
bubble point	1046.0 ± 0.1	329.2 ± 0.5	1.39 ± 0.06
80	wt % (77.5 mol	%) HCFC 142	Ъ
dew point	72.3 ± 0.1	352.9 ± 0.6	1.60 ± 0.05
dew point	114.5 ± 0.1	371.8 ± 0.8	2.36 ± 0.05
dew point	198.4 ± 0.1	391.8 ± 0.9	3.46 ± 0.06
dew point	314.3 ± 0.1	402.3 ± 1.2	4.21 ± 0.08
dew point	395.6 ± 0.1	402.4 ± 2.0	4.26 ± 0.09
bubble point	518.1 ± 0.1	401.7 ± 1.4	4.28 ± 0.10
bubble point	652.3 ± 0.1	398.6 ± 0.8	4.08 ± 0.07
bubble point	822.0 ± 0.1	379.5 ± 0.5	2.95 ± 0.06
bubble point	1037.3 ± 0.1	328.7 ± 0.4	1.06 ± 0.04

60 wt % HCFC 142b locate at the position near the vapor pressure curve of CFC 12, as shown in Figure 3.

For the HCFC 142b + HCFC 22 system, Valtz et al. (12) reported the saturated liquid densities and bubble-point pressures along four isotherms, and then they calculated the saturated vapor densities and dew-point pressures with the aid of the Peng-Robinson equation. We prepared Figure 4 to compare our dew- and bubble-point data with values reported by Valtz et al. along three isotherms, i.e., 322.8, 348.4, and 372.5 K. In Figure 4 solid symbols indicate values reported by Valtz

et al., including their calculated values, while other symbols indicate those by the present study. It should be noted, however, that our dew and bubble points have been interpolated so as to compare them along the common isotherms reported by Valtz et al., in Figure 4. The broken curves and solid curves in Figure 4 indicate the bubble-point and dew-point curves calculated from the Raoult's law, respectively.

Although the bubble-point pressure data at 372.5 and 348.4 K by Valtz et al. (12) are in good agreement with our data, both data show lower pressure than the Raoult's law. On the other hand, both sets of the dew- and bubble-point data agree well with the Raoult's law at 322.8 K. Our dew-point pressure data show a good agreement with Raoult's law at 372.5 and 348.4 Κ.

Acknowledgment

We are greatly indebted to the National Research Laboratory of Metrology, Tsukuba, Japan, for calibration of the thermometer, to Shin-etsu Chemicals Co., Ltd., Tokyo, for furnishing the silicone oil, to Dalkin Industries, Ltd., Osaka, and to Asahi Glass Co., Ltd., Tokyo, for kindly furnishing the very pure samples. We also acknowledge Takuhei Shimokawa, Mitsuhiro Yudo, and Takeshi Tamatsu for their valuable cooperation.

Literature Cited

- (1) For example, see: Kruse, H. Int. J. Refrig. 1981, 4 (3), 159.
- Air Conditioning, Heating & Refrigeration News, July 13, 1987. Takaishi, Y.; Kagawa, N.; Uematsu, M.; Watanabe, K. Proc. Symp. Thermophys. Prop., 8th 1982, 2, 387. (3) (4) Hasegawa, N.; Uematsu, M.; Watanabe, K. J. Chem. Eng. Data 1985,
- 30, 32.
- (5) Hosotani, S.; Maezawa, Y.; Uematsu, M.; Watanabe, K. J. Chem. Eng. Data 1988, 33. 20.
- Yada, N.; Uematsu, M.; Watanabe, K. Trans. Jpn. Assoc. Refrig. (6) 1988, 5 (1), 107.
- Yada, N.; Uematsu, M.; Watanabe, K. J. Chem. Eng. Data 1989, 34, (7) 431. (8)
- Yada, N.; Uematsu, M.; Watanabe, K. Int. J. Thermophys. 1989, 10 (3), 639.
- Takalshi, Y.; Uematsu, M.; Watanabe, K. Proc. Int. Congr. Refrig., (9) 15th 1978. 2, 117
- (10) Takaishi, Y.; Uematsu, M.; Watanabe, K. Bull. JSME 1982, 25 (204), 944.
- (11) Tatoh, A. Private communication, 1990.
- (12) Valtz, A.; Laugier, S.; Richon, D. Int. J. Refrig. 1986, 9, 282.

Received for review March 29, 1990. Revised October 23, 1990. Accepted January 10, 1991. We are also indebted to the grant from Tokyo Electric Power Co., Ltd., Tokyo. We are partially indebted to the Grant-In-Aid for Scientific Research Fund in 1989 (Project No. 01803022 and 01790389) from the Ministry of Education, Science and Culture, Japan.

Binary Diffusion Coefficients of the Methanoi/Water System in the Temperature Range 30–40 °C

Yeng E. Lee and Sam F. Y. Li*

Department of Chemistry, National University of Singapore, 10 Kent Ridge Crescent, Republic of Singapore 0511

Measurements of the mutual diffusion coefficient of the methanol/water system have been performed by using the Taylor dispersion technique. The results extend over the complete composition range for the mixtures and over the temperature range of 30-40 °C. The system exhibits a minimum in the diffusivity as a function of composition at constant temperature, which is characteristic of alcohol/water mixtures.

Introduction

A knowledge of the transport properties of fluids, i.e. the viscosity, diffusivity, and thermal conductivity, is frequently required for designing new technological processes and also in research work. In particular, diffusion is important in the design of chemical reactors, liquid/liquid extraction units, and absorbers, as well as distillation columns. In addition, the study of fluid-state theory, mass-transfer phenomena, and molecular